

LandSafe

A high-performance, generalizable landslide forecasting system

Arnav Mehta, Arsalaan Alam & Tanvi Sanghai

Contents

01 Problem & Solution

02 Literature Review

03 Data Preprocessing

04 ML Methodology

05 Performance Metrics and Deployability

01 The Problem



Problem Statement

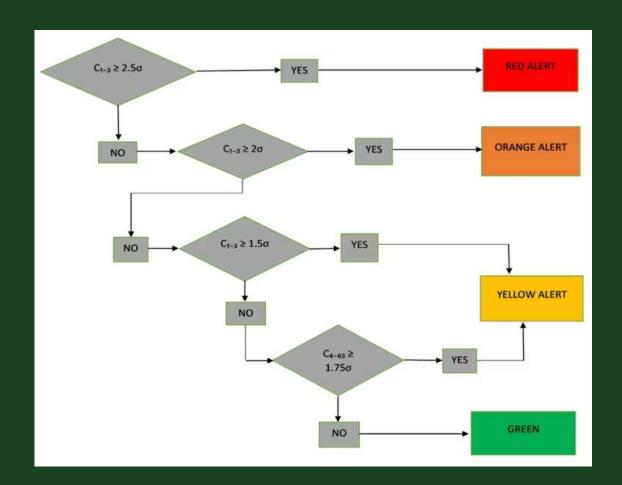
Predicting Landslides Using Environmental and Infrastructural Data for disaster prone environments.

Why Are Landslides a Problem?

- Highly Destructive: Cause thousands of deaths and billions in damages yearly.
- **Widespread Impact:** Affect ~4.8 million people annually (UNDRR).
- Major Consequences: Infrastructure destruction, displacement, economic loss.

02 Literature Review

Paper 1



Rainfall Threshold Estimation and Landslide Forecasting for Kalimpong, India Using SIGMA Model

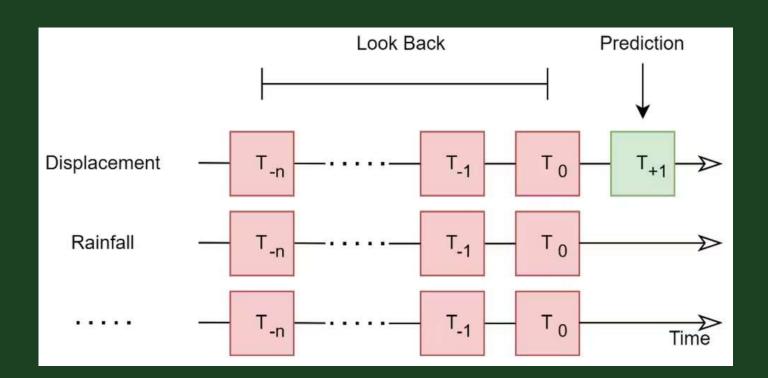
Abraham, M. T., Satyam, N., Kushal, S., Rosi, A., Pradhan, B., & Segoni, S. (2020). Rainfall Threshold Estimation and Landslide Forecasting for Kalimpong, India Using SIGMA Model. Water, 12(4), 1195. https://doi.org/10.3390/w12041195

Methodology:

The paper primarily relies on rainfall data as the sole input for the SIGMA model, however ignores other critical factors such as soil moisture, geological conditions, slope stability, and land use patterns, which are known to influence landslide by other papers.

Limited to specific geographical areas and cannot be generalised.

Paper 2



Landslide displacement forecasting using deep learning and monitoring data across selected sites (in Italy)

Nava, L., Carraro, E., Reyes-Carmona, C. et al. Landslide displacement forecasting using deep learning and monitoring data across selected sites. Landslides 20, 2111-2129 (2023). https://doi.org/10.1007/s10346-023-02104-9

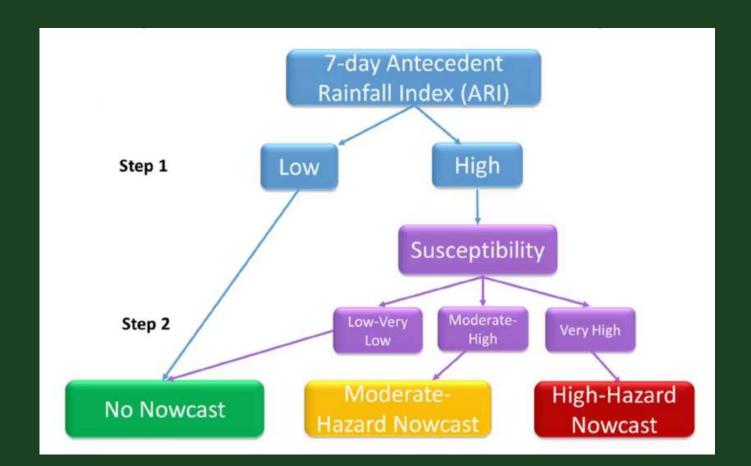
Methodology:

Evaluates 7 Deep Learning models (MLP, LSTM, GRU, 1D CNN, Bi-LSTM, Conv-LSTM, Stacked LSTM) are used for time seriesbased landslide displacement prediction. These models capture improved prediction accuracy, and detect seasonal patterns. Selects look-back windows (3, 5, 7, 9, 12 time steps) to optimize past data consideration.

Limitations:

No specific temporal prediction - only assesses landslide susceptibility. Limited Generalization of Conv-LSTM, which only worked well in seasonal landslides.

Paper 3



Satellite-based assessment of rainfalltriggered landslide hazard for situational awareness (LHASA - by NASA)

Kirschbaum, Dalia & Stanley, Thomas. (2018). Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness. Earth's Future. 6. 10.1002/2017EF000715.

Methodology:

It uses a decision tree structure to issue nowcast warnings of 3 types of severity based on a 7-day Antecedent Rainfall Index (water accumulation) and a static susceptibility map.

Limitations:

The decision tree-based approach is very basic and as a result the LHASA system has True Positive Rates in the range of 8-60% and a 4-5 hour latency.

Addressing the Gaps:

Narrow Feature Selection:

Most models only use rainfall and slope, ignoring key factors like forest loss, infrastructure, and humidity.

Poor Generalizability:

Region-specific training limits transferability; diverse datasets are needed for global performance.

Outdated Models:

Reliance on basic classifiers like logistic regression reduces accuracy. Modern hybrid models perform better.

Static & Stale Data:

Static maps don't reflect real-time changes like deforestation or construction.

Presenting LandSafe:

- Multi-feature ML Model : Integrates climate, forest loss, elevation, & infrastructure data.
- **Generalizable**: Can determine occurence of landslide in next 5 days for (lat, long)
- **Early Warnings**: Enables proactive disaster mitigation and casualty reduction.

Applications:

- Predicts landslides using real-time climate and terrain data to enable early alerts
 and reduce damage.
- Supports safer infrastructure planning by analyzing terrain stability and identifying high-risk zones.
- Helps insurers assess risk and optimize policy pricing using environmental indicators
 like forest loss and weather patterns.

03 Data Preprocessing

Data Extraction - Climate & Forest Loss

Landslide & Climate Data Collection:

- Global Landslide Catalog (NASA): 11,093 landslides (lat, long, time, country).
- Synthetic Data: 10,000 non-landslide events, sampled locations/dates, fetched weather data.

Forest Loss Data (Global Forest Change Dataset):

- 5-mile radius check for forest loss before event year.
- 10° x 10° TIF tiles (40,000 x 40,000 pixels).
- Custom handler for TIF data extraction and analysis.

Climate Features (Open-Meteo API):

- 15 queries per event (15 days before to event day).
- 75 features: Precipitation, humidity, wind speed, air pressure, temperature.

Data Extraction - Infrastructure, Elevation & Lithology

Elevation Data (NASA SRTM)

Try Pitch

- Dataset used: NASA's Shuttle Radar Topography Mission (SRTM). Found on kaggle
- Processing: Downloaded .hgt files, ran gdaldem tool.
- Feature extracted: 90th percentile slope value within landslide bounding box.

Infrastructure Data (OSM API) - OpenStreetMap API

- Extracted counts of roads, highways, buildings, streets, and routes.
- Total count recorded as the OSM feature.

Feature Preprocessing - Data Cleaning & Transformation

Data Cleaning & Balancing:

- Rows with missing or invalid values were removed.
- Landslide severity labels were filtered to only include "small", "medium", and "large" events.

Feature Engineering - Terrain & Infrastructure:

- Forest Loss was extracted from GFC TIF files:
 Binary feature: 1 if forest loss occurred before
 the event year, otherwise 0.
- Slope was extracted and stored as a continuous feature.
- OSM features counted the number of infrastructure tags at each location.
- Lithology was assigned as a categorical feature based on the rock type at the landslide location.

3 Feature Engineering – ARI:

- Climate data was stored as 80 separate features, from 15 days before the event to the day of the event.
- Antecedent Rainfall Index (ARI) was computed using weighted moving averages of precipitation from 12 to 5 days before the event.

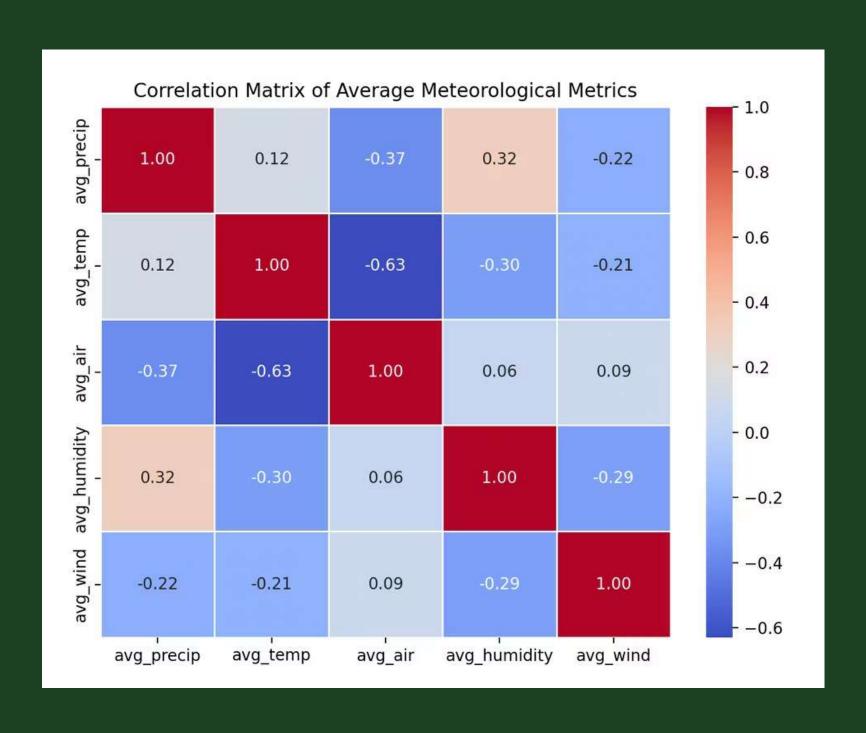
Feature Scaling & Encoding

- Numerical Features (precipitation, temperature, humidity, wind speed, air pressure, slope, forest loss) were standardized using Z-score normalization.
- Categorical Features (lithology) were encoded using ordinal encoding.

2

1/1

Correlation Matrix for Weather Metrics



Try Pitch

Some Snippets

get_weather_data()

```
def format date(date str):
   return datetime.datetime.strptime(date_str, "%m/%d/%y").strftime("%Y-%m-%d")
def get_weather_data(lat, lon, date):
   base_url = "https://archive-api.open-meteo.com/v1/archive"
   start_date = (datetime.datetime.strptime(date, "%Y-%m-%d") - datetime.timedelta(days=15)).str1
   end_date = (datetime.datetime.strptime(date, "%Y-%m-%d") - datetime.timedelta(days=7)).strftim
   params = {
       "latitude": lat,
       "start_date": start_date,
       "end_date": end_date,
       "daily": ["precipitation_sum", "temperature_2m_max", "temperature_2m_min", "surface_pressu
       "timezone": "auto"
   response = requests.get(base_url, params=params)
   if response.status_code == 200:
       weather_data = response.json().get("daily", {})
       print(f"Weather data received for {lat}, {lon}")
       return {
            "precipitation": weather_data.get("precipitation_sum", [])[:9], # Last 15 to 7 days
           "temperature": [(max_ + min_) / 2 for max_, min_ in zip(weather_data.get("temperature_
            "air pressure": weather data.get("surface pressure mean", [])[:9],
            "humidity": [(max_ + min_) / 2 for max_, min_ in zip(weather_data.get("relative_humidi
            "wind_speed": weather_data.get("wind_speed_10m_max", [])[:9]
       print(f"Error fetching weather data for {lat}, {lon}: {response.text}")
       return None
```

Try Pitch

get_forest_loss()

```
BASE_URL = "https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023
def get_forest_loss(lat, lon, year):
    tile lat = int(lat // 10) * 10
    tile lon = int(lon // 10) * 10
    lat suffix = "N" if tile lat >= 0 else "S"
    lon_suffix = "E" if tile_lon >= 0 else "W"
    tile_lat = abs(tile_lat)
    tile_lon = abs(tile_lon)
    treecover_filename = f"Hansen_GFC-2023-v1.11_treecover2000_{tile_lat:02d}{
    treecover_path = os.path.join(TIF_DIR, treecover_filename)
    treecover_url = BASE_URL + treecover_filename
    if not os.path.exists(treecover_path):
        response = requests.get(treecover_url, stream=True)
        if response.status_code == 200:
            with open(treecover_path, "wb") as f:
                for chunk in response.iter_content(1024):
                    f.write(chunk)
        else:
            return None
    lossyear_filename = f"Hansen_GFC-2023-v1.11_lossyear_{tile_lat:02d}{lat_su
    lossyear_path = os.path.join(TIF_DIR, lossyear_filename)
    lossyear_url = BASE_URL + lossyear_filename
```

16

Peek at the Compiled Dataset

(notice the features, 1st row)

■ GLIF dataset.csv > | ¹ data

row, id, date, lat, lon, country, fatalities, injuries, type, trigg severity, location, precip15, temp15, air15, humidity15, wind15, precip14, temp14, air14, humidity14, wind14, precip13, temp13, air13, humidity13, wind1 0,1069,9/4/16,46.726906,13.787332,Austria,0,0,landslide,d embankment_collapse, large,...,2.8,22,1017,98,9,49.6,13,1024,98,9,3.7,16,1029,96,12,0,20,1029,95,10,0,22,1027,95,7,0,23,1024,97,6,0,23,1022 1,1855,3/23/17,49.726406,-116.911834, Canada, 0, 0, mudslide, rain small,above_road,3.3,-2,1024,100,9,6.8,-2,1026,100,6,4.4,3,1023,100,7,8.4,3,1023,100,6,2.9,3,1024,100,7,5,4,1024,100,7,13.4,4,1020,100,7 2,797,10/20/09,18.5347,-72.4097,Haiti,4,0,landslide,d small,unknown,8.6,33,1015,97,16,16.7,**31**,1015,98,22,12.5,33,1017,97,17,16.4,**32**,1017,97,19,5.9,33,1016,97,13,16.6,**31,1015**,97,7,9.5,30,1015, 3,12967,12/31/09,4.421429046,-75.22070904,Colombia,0,0,rotational_slide,...,urban,0,29,1014,96,8,0,28,1014,88,9,0.1,26,1013,82,7,3.4,23,1016,96,5,6.9,24,1017,100,6,13.2,24,1017,100,5,3,27,1016,8 4,13089,5/1/14,39.2902,-76.6651,United_States,0,0,mudslide,rain,small,below_road,0,8,1035,85,26,0,10,1037,94,17,0,11,1035,95,10,0,17,1027,91,17,0,15,1030,87,19,0,21,1025,86,10,4.7,21,1011,92,20,0,13 5,9036,7/12/13,36.2629,-115.6158,United_States,0,0,debris_flow,rain,medium,unknown,0,36,1015,26,14,0,40,1013,28,15,0.2,39,1010,21,24,1.3,40,1009,23,21,1.9,38,1009,26,21,1.2,40,1012,29,21,2.5,39,1010 6,7990,5/10/09,4.44059512,-75.24390515, Colombia,0,0, unknown,...,urban,0.8,26,1015,79,12,0,26,1016,81,11,1.9,30,1015,82,12,4.5,27,1015,89,8,14.5,23,1017,93,5,5.6,22,1018,87,6,5.6, 7,3954,10/25/10,15.5227,-85.265,Honduras,0,0,landslide, cal_cyclone, medium, unknown, 0.6, 30, 1015, 99, 9, 2.6, 30, 1013, 99, 8, 2.4, 32, 1014, 100, 6, 1.4, 31, 1016, 100, 9, 3.6, 29, 1016, 98, 8, 4.4, 28, 1017, 99, 8, 6, 29, 10 m,unknown,above_road,1.6,11,1028,93,13,0,**15**,1029,86,9,1.4,15,1027,93,19,8.4,**2,1027**,96,22,0,8,1027,91,9,0,**11**,1022,97,13,0,10,1023,97 8,2288,3/29/14,42.3946,-122.2137,United_States,0,0,landslide,u

humidity2,wind2,precip1,temp1,air1,humidity1,wind1,precip0,temp0,air0,humidity0,wind0,ARI9,ARI9,ARI6,ARI5,ARI4,ARI3,ARI2,ARI1,ARI0,forest,forest_year,slope,osm,lithology,type,landslide

Try Pitch

04 Proposed ML Methodology

Approaches

Binary Classification

Used to determine whether a landslide will occur at a given location and time (0 or 1).

Models Used:

- 1. K-Nearest Neighbors (KNN)
- 2. Support Vector Classifier (SVC)
- 3. Random Forest (RF)

Purpose: Evaluate model accuracy on historical data using multi-feature environmental input.

Temporal Forecasting

Used to predict how soon a landslide might occur, based on recent climate patterns.

Models Used:

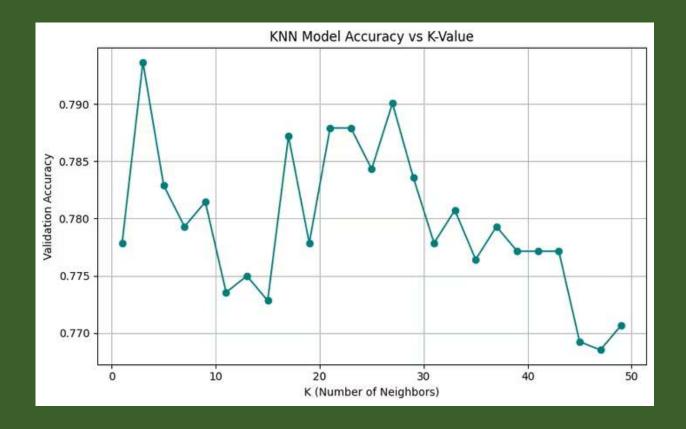
- 1. LSTM (Recurrent Neural Network)
- 2. XGBoost (Time-aware tabular prediction)

Purpose: Capture temporal dependencies in weather and terrain features to enable proactive alerts.

04(a) Binary Classification

K Nearest Neighbours (KNN)

KNN predicts landslides by finding past cases with similar conditions. If most led to landslides, it predicts one will occur.



KNN achieved peak accuracy around when KNN value was around 3 to 5.

It was slow to compute during training and didn't scale well to 18,000+ samples.

Support Vector Machine (SVM)

SVC finds the optimal boundary (hyperplane) that best separates landslide and non-landslide points in high-dimensional space.

nSV = 7465, nBSV = 7156Total nSV = 7465

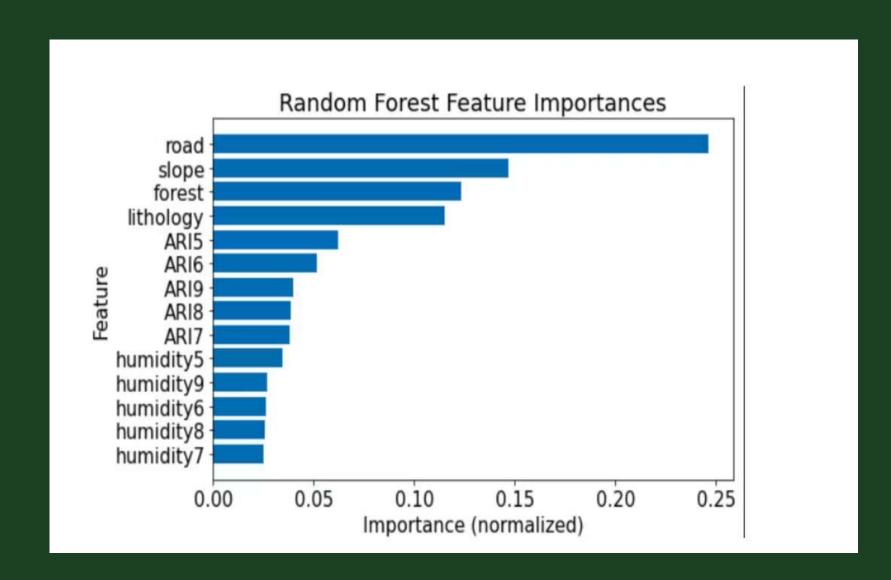
The model used 7465 support vectors, nearly 41% of the training data, reflecting a highly complex decision boundary.

This leads to higher memory use and slower prediction, making it harder to scale.

Approach 3: Random Forest (RF)

Random Forest predicts if a landslide will occur by combining the results of many decision trees, each trained on different environmental features (like ARI, slope, forest loss, etc.) and data subsets. The final prediction is based on a majority vote across all trees.

RF captures complex, non-linear patterns across features to robustly predict landslides across diverse terrain and climate conditions.



LandSafe's RF model relies more on terrain and infrastructure than short-term weather, boosting generalization across regions.

Try Pitch

04(b) Temporal Forecasting

Approach 4: LSTM Neural Network

Input:

10-day time-series window with 10 features per day

Architecture (attached image)

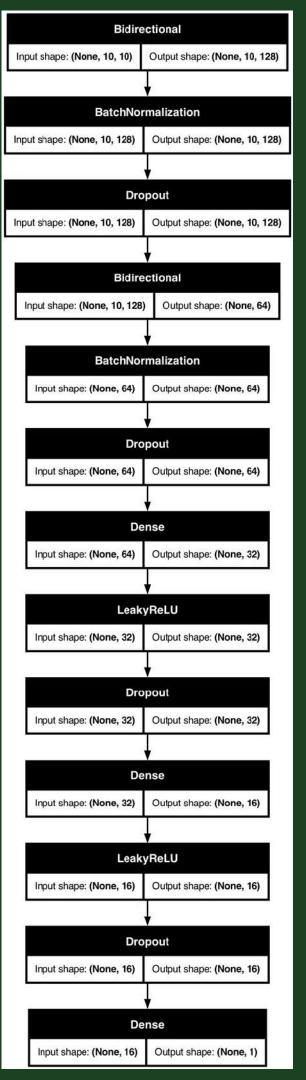
- Bidirectional LSTM-based Neural Network with stacked layers
- Dropout applied after each layer (p = 0.2)
- LeakyReLU activations used after each Dense layer

Compilation:

- Loss Function: Binary Crossentropy
- Optimizer: Adam

Training Configuration:

- Epochs: 25
- Batch Size: 64



Approach 5: XGBoost

Used XGBoost Classifier for binary classification to predict if a landslide will occur within the next 24 hours based on the preceding 15 days of climate and terrain data.

Features

- Total of 89 features.
- Past 15-day sequences of Precipitation, Temperature, Air Pressure, Humidity, Wind Speed
- Static features: slope, forest loss, OSM infrastructure, lithology

Training Details

- Ordinal encoding for categorical features
- Feature scaling applied before model input
- Model trained using XGBoost DMatrix format for efficiency

25

Hyperparameter Tuning

```
# XGBoost parameters
params = {
    'objective': 'binary:logistic',
    'eval_metric': 'logloss',
    'eta': 0.1,
    'max_depth': 6,
    'min_child_weight': 1,
    'subsample': 0.8,
    'colsample_bytree': 0.8,
    'gamma': 0.1,
    'alpha': 0.1,
    'lambda': 1.0,
    'seed': 42
}
```

We used early stopping. Stopped at 20 rounds to avoid overfitting!

Try Pitch

Challenges

Domain Knowledge

Understanding terrain-specific features like lithology and slope required deep geospatial insight.

Our solution: We conducted extensive literature reviews and expert consultation to guide feature relevance.

Feature Preprocessing

Data from APIs and TIF raster files was noisy and inconsistent across sources.

Our solution: We built custom parsers and applied thresholding, scaling, and encoding pipelines.

Real-Time Integration

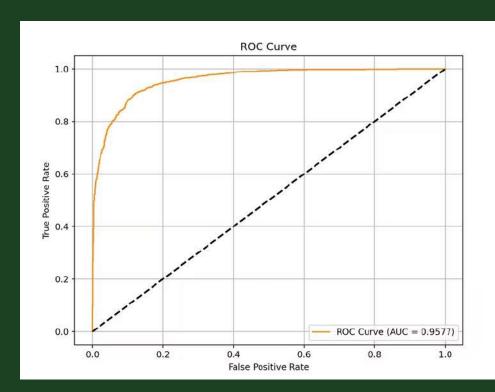
Weather APIs had quota limits and inconsistent temporal coverage.

Our solution: We designed a lightweight pipeline and explored sensor-based alternatives for edge inference.

05 Performance Metrics & Deployability

The Best Performer is...

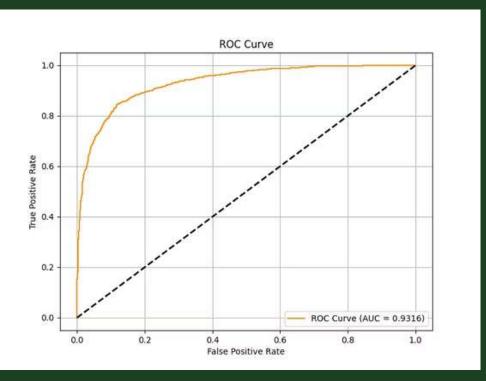
XGBoost!

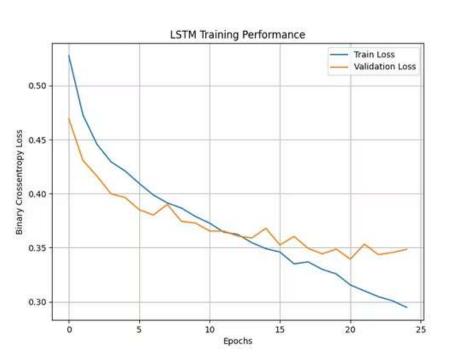



```
MODEL EVALUATION =====
Train Accuracy: 0.9471
Test Accuracy : 0.8896
Precision
                : 0.8950
Recall
                : 0.8816
F1 Score
               : 0.8882
ROC AUC
               : 0.9577
Confusion Matrix:
[[1814 207] <- [True Negatives, False Positives]]</pre>
[[237 1764] <- [False Negatives, True Positives]]</pre>
Classification Report:
              precision
                            recall f1-score
                                                support
                   0.88
                              0.90
                                        0.89
                                                   2021
                   0.89
                              0.88
                                        0.89
                                                   2001
                                        0.89
                                                   4022
    accuracy
                   0.89
                              0.89
                                        0.89
                                                   4022
   macro avg
weighted avg
                              0.89
                                                   4022
                   0.89
                                        0.89
```

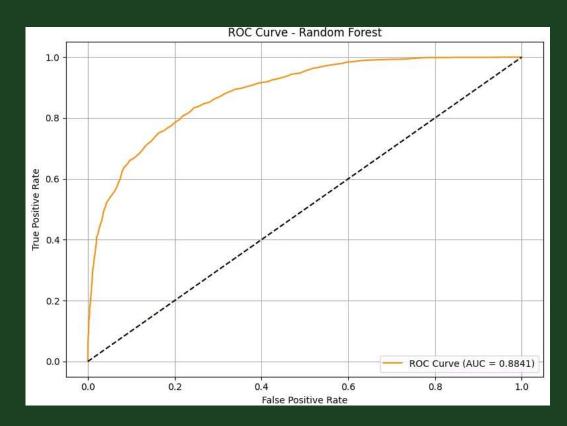
LSTM

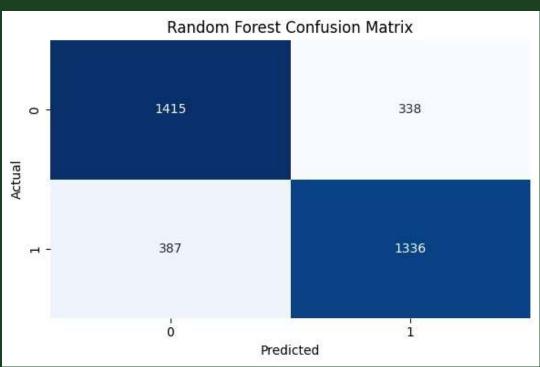
Train Accuracy: 0.8960 Test Accuracy : 0.8533 Precision : 0.8605 Recall : 0.8416 : 0.8509 F1 Score ROC AUC : 0.9278 Confusion Matrix: [[1748 273] <- [True Negatives, False Positives]]</pre> [[317 1684] <- [False Negatives, True Positives]] Classification Report: recall f1-score precision support 0.86 0.85 0.86 2021 0.86 0.84 0.85 2001 0.85 4022 accuracy 0.85 0.85 0.85 4022 macro avg weighted avg 0.85 0.85 0.85 4022





Random Forest





Training Random Forest Classifier									
Random Forest Classification Report:									
	precision	recall	f1-score	support					
0	0.84	0.83	0.84	1753					
1	0.83	0.85	0.84	1723					
accuracy			0.84	3476					
macro avg	0.84	0.84	0.84	3476					
weighted avg	0.84	0.84	0.84	3476					
Accuracy: 0.8357307249712314									

Try Pitch

And last but not the least...

KNN

Training KNN							
k parameter: 100	0%	25/2	5 [00:01<00	0:00, 21.59it/s]			
Best k value: 3	7						
Classification Report:							
р	recision	recall	f1-score	support			
0	0.70	0.75	0.73	1756			
1	0.73	0.67	0.70	1720			
accuracy			0.71	3476			
macro avg	0.71	0.71	0.71	3476			
weighted avg	0.71	0.71	0.71	3476			

Total nSV = 7913									
[[1292 464]									
[510 1210]]									
	precision	recall	f1-score	support					
0	0.72	0.74	0.73	1756					
1	0.72	0.70	0.71	1720					
accuracy			0.72	3476					
macro avg	0.72	0.72	0.72	3476					
weighted avg	0.72	0.72	0.72	3476					

Deployability of LandSafe

Deployment Potential at Plaksha:

LandSafe can be deployed as an early warning system to assess landslide risk in real-time using local environmental data.

Plaksha's proximity to the Shivalik hills, combined with seasonal monsoon rainfall, makes it a relevant testbed for landslide forecasting.

A lightweight dashboard or alerting system could be integrated with local weather stations and satellite feeds for live prediction.

How it'll work:

- Integrate LandSafe with on-site weather sensors (humidity, rainfall, temperature).
- Feed this data into the trained model to predict landslide risk for the next 24 hours.
- Trigger warnings for campus authorities via SMS or web dashboard if high risk is detected.

Scalability Challenges:

- We'll have to create a **real-time data processing pipeline** to fetch **features** required for **inference**; for that we'll need to find **open-source APIs** or develop **custom sensors**.
- Even though we've trained on the **largest dataset**, there's a chance that **feature values** may differ and lead to **wrong predictions**.

References

https://www.usgs.gov/natural-hazards/landslide-hazards

Abraham, M. T., Satyam, N., Kushal, S., Rosi, A., Pradhan, B., & Segoni, S. (2020). Rainfall Threshold Estimation and Landslide Forecasting for Kalimpong, India Using SIGMA Model. Water, 12(4), 1195. https://doi.org/10.3390/w12041195

Nava, L., Carraro, E., Reyes-Carmona, C. et al. Landslide displacement forecasting using deep learning and monitoring data across selected sites. Landslides 20, 2111-2129 (2023). https://doi.org/10.1007/s10346-023-02104-9

Kirschbaum, Dalia & Stanley, Thomas. (2018). Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness. Earth's Future. 6. 10.1002/2017EF000715.

Nava et al. (2023) - Use of BiLSTM, CNN, etc.

https://doi.org/10.1007/s10346-023-02104-9

https://www.kaggle.com/datasets/kazushiadachi/global-landslide-data

https://earthenginepartners.appspot.com/science-2013-global-forest

https://www.openstreetmap.org

https://open-meteo.com

https://landslides.nasa.gov/

https://education.nationalgeographic.org/resource/landslide

36

Thank You

